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ABSTRACT 

Homomorphic encryption is the encryption scheme that supports operations on encrypted data. Homomorphic 

encryption can be employed in any system by using various public-key algorithms. This research paper aims to 

provide an evaluation for an effective available Homomorphic encryption technique to understand how 

Homomorphic encryption work to achieve data security when data is transferred or stored on the public 

environment. Homomorphic encryption is an available encryption algorithm which secures data operations on 

storage mediums both to process encrypted data located on remote server and to preserve privacy, 

homomorphic encryption is the only option know to perform operations on encrypted data because it allows the 

operations on the ciphertext, which can provide the same results after calculations as working directly on the 

raw data. In this research paper, the main focus is to provide Evaluation for an effective homomorphic 

encryption technique for data security based on our findings and understanding of available public-key 

cryptographic techniques. The case study is a proposed implementation of PySEAL, a High-Level Python-

pybind11 library wrapper for the Simple Encrypted Arithmetic Library (SEAL) implemented with a Docker 

container. Homomorphic encryption on various operations for encryption is performed and evaluated for 

performance analysis. It was observed from the result and corresponding Sample T-test analysis of our method 

that, Homomorphic encryption Operations are much more secure, faster and guarantee data security.  
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1.0 INTRODUCTION 
Encryption is a technique whereby data, termed a message, is mathematically transformed using an encryption 

key to produce a ciphertext. The ciphertext can only easily be decrypted to reveal the original data if the 

corresponding decryption key is known. Therefore, a ciphertext can be stored openly without compromising 

privacy so long as the decryption key is kept secret. [1]. 

Homomorphic Encryption is an encryption that allows ciphertext operations to be performed directly and this 

concept is called “privacy Homomorphism” [2]; thus an untrusted third party can process the ciphertexts without 

decrypting them, [3]. The possibility of homomorphic encryption was proposed by Rivest, Adleman, and 

Dertouzos, (1978) and many schemes that supported either multiplication like that of, [4], ElGamal, [5], etc or 

Homomorphic addition scheme such as Goldwasser-Micali[6], Paillier [7] as found. The decryption of the result 

of ciphertext operation is equivalent to the result of the corresponding plaintext operation. Therefore, 

Homomorphic encryption (HE) allows arbitrary operations to be performed on ciphertexts, [8]. 

The major problem with HE operations is the increasing noise of ciphertext generated. When ciphertexts are 

randomly generated, some considerable amount of noise is produced, this noise grows as homomorphic 

operations proceed, and eventually affects the correctness of the decryption operation when the noise magnitude 

exceeds a certain threshold and to overcome this problem, [9] proposed the bootstrapping technique which 

solved the noise problem. However, due to its inherent complexity, bootstrapping has become a major 

bottleneck for the effective construction of HE schemes, [3]. 
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This research paper evaluates and presents Homomorphic encryption techniques currently available for various 

types of ciphertext data operations and presents a comparative overview of their performance to show how they 

achieve data security in the public environment.   

 

 

2.0 LITERATURE REVIEW OF RELATED WORK  
The first suggested concept of Homomorphic encryption was by [10], they proposed the RSA public key 

encryption algorithm a multiplication homomorphism and the security of there scheme is based on integer 

factorization. Followed by the encryption scheme proposed by  [5], the ElGamal encryption scheme is a 

multiplication homomorphism and the [7], Paillier encryption scheme with the addition of homomorphism 

property which was a provable encryption scheme with remarkable level of safety. The closer to Paillier was 

Dan [11]. Boneh invented a plausible scheme that encouraged unlimited additive homomorphic encryption 

operation with only a multiplicative operation for a function. 

 

In 2009, Gentry proposed the fully homomorphic encryption (FHE) scheme based on the ideal lattice problem, 

[9], and this scheme performed addition and multiplication operations of ciphertext. With more improvement to 

Gentry (2009), the fully homomorphic encryption technique entered the period of fast development. Dijk et al. 

proposed the fully homomorphic encryption scheme DGHV within the integer field, [12], and this scheme is 

based on the greatest common divisor (GCD) problem.  

 

In the presentation of Brakerski et al. they proposed a fully homomorphic encryption scheme based on the LWE 

(learning with errors) problem, [13]. Its main idea is to address the defects of an ideal lattice-based scheme 

through the re-linearization technique. 

 

So also did Stehle et al. introduced the NTRU (number theory research unit) algorithm to improve the efficiency 

of the initial FHE scheme D. [14]. Its security assumption is based on RLWE (ring learning with errors).  

 

Another major contribution in technique was the study of Brakerski et al. proposed the BGV scheme in 

literature [15], which can support multi-bit operation, and the computation complexity is much lower than that 

of Gentry’s initial scheme. From the initial scheme of Gentry to BGV scheme, the research on the homomorphic 

encryption scheme has made remarkable progress, but still far away from the actual application, [16]. Because 

of the remarkable discovery, Partial Homomorphic Encryption (PHE) was no longer the choice and fashion for 

homomorphic schemes, rather the direction for a Fully Homomorphic scheme is the order for a secure cyber 

world. 

 

Many current Homomorphic encryption schemes have been proposed in literature [[13], [17], 

[18],[19],[20],[21],[22],[23]] and in recent years, various technologies of Homomorphic encryption technique 

have been broadly used for data privacy protection, such as HElib, libScarab, FHEW, and SEAL . 

 

In contrast to the above schemes, which are either proof of concept or small-depth implementations, the authors 

in [24] implemented FHE for the first time to evaluate the circuit complex enough for a real-life application. In 

[24] implemented a variant of the BGV scheme proposed in [13], which is a leveled FHE without bootstrapping, 

to evaluate the AES circuit homomorphically. 

Although all aforementioned implementations are published in literature, unfortunately, only a few of them are 

publicly available to researchers. Some of the publicly available implementations are: 

2.1 HElib  
HElib [25] is the most important and widely utilized. HElib implements the BGV scheme [13] with Smart-

Vercauteren ciphertext packing techniques and some new optimizations. The design and implementation of 

HElib are documented in [25] and algorithms used in HElib are documented in [26]. HElib is designed using 

low-level programming, which deals with the hardware constraints and components of the computer without 

using the functions and commands of a programming language and hence, defined as "assembly language for 

HE".  

It was implemented using the GPL-licensed C++ library. Since December 2014, it supports bootstrapping [27] 

and since March 2015, it supports multi-threading. In an important extension, the homomorphic evaluation of 

AES was implemented on top of HElib [28] and included in the HElib source code in [25]. Unfortunately, the 
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usage of HElib is not easy because of the sophistication needed for its low-level implementation and parameter 

selection which affects both performance and security level.   

 

2.2 libScarab 
Another notable open-source FHE implementation is libScarab [29]. In [30], they consider libScarab [29] the 

first open-source implementation of FHE.  

The parameter selection of libScarab [29] is relatively easier than that of HElib, but it suffers from a lot of 

limitations [30]. For instance, it does not implement modern techniques like modulus reduction and re-

linearization techniques [15] to handle the noise level or it also does not support the SIMD techniques 

introduced in [31]. It implements [32] and documentation is provided in [29].  

 

2.3 Fastest Homomorphic Encryption in the West (FHEW) 
Another major implementation is introduced by Ducas and Micciancio and called "Fastest Homomorphic 

Encryption in the West" (FHEW) [33]. It is documented in[34]. It significantly improves the time required to 

bootstrap the ciphertext claiming homomorphic evaluation of a NAND gate "in less than a second". A NAND 

gate is functionally complete. Hence, any possible boolean circuits can be built using only NAND gates. In [33], 

the usage of ciphertext packing and SIMD techniques provides an amortized cost. However, in FHEW such 

performance is achieved using only a few hundred lines of code with the use of one additional library, FFTW 

[35]. Later, the homomorphic computation cost of any binary gate [33] is increased by a factor of 50 by making 

some optimizations on the bootstrapping algorithm.  

The main improvement is based on the torus representation of LWE ciphertexts. This improved the cost of 

bootstrapping 10 times according to the best known bootstrapping in [33]. They also further improved the noise 

propagation overhead algorithms using some approximations. Finally, they also reduced the size of the 

bootstrapping key from 1GB to 24MB by achieving the same security level. 

 

2.4 Simple Encrypted Arithmetic Library (SEAL) 
More recently, another HE library called Simple Encrypted Arithmetic Library (SEAL) [36] is released by 

Microsoft. The goal of releasing this library is explained as providing a well-documented HE library that can be 

easily used by both crypto experts and non-experts with no crypto background like practitioners in 

bioinformatics [30]. The library does not have external dependencies like others and it includes automatic 

parameter selection and noise estimator tools, which makes it easier to use.  

Finally, the security estimates of two well-known LWE-based HE libraries, HElib and SEAL, against dual 

lattice attacks are revised in [37]. It is shown that the parameters for some level of bits size and the security 

estimation are almost similar for SEAL v2.0 and HElib.  
 

3.0 Proposed System 
Traditional encryption schemes, both symmetric and asymmetric, were not designed to perform computational 

operations on the algebraic structure of ciphertext spaces directly instead of plaintext. Many traditional schemes 

are limited to partial types of computations on directly encrypted data. The restriction to one single operation is 

very strong, however, and instead a much more powerful fully homomorphic encryption scheme that respects 

both additions and multiplications is needed for many interesting applications. The first of such an encryption 

scheme was invented by Craig Gentry in 2009, and since then researchers have introduced some new and more 

efficient fully homomorphic encryption schemes. However, with the promising theoretical power of 

homomorphic encryption, the practical side remained underdeveloped for a long time. 

The proposed system seeks to implement a Simple Encrypted Arithmetic Library using a High-level 

programming language (python), in other to achieve the objectives of the research.  

 

3.1  Architecture Of The Proposed System 
Upon initialization of the system, the system automatically and randomly generates nominal and image data 

which serves as input parameters for the Homomorphic encryption technique to perform computation on the 

encrypted data and generate output for analysis to be done on the results. 

 

 

 

 

Nominal encrypted data 

Image encrypted data 

Homomorphic operations 
Result 

Input  
Processing 

Output 

Figure 3.  1: Architecture of the proposed system 
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At the processing stage, a SEAL example builds and generates input data. The Python wrapper initializes the 

Docker from C++ to Python. The software also includes bash scripts to build the Docker container and execute a 

series of examples using PySEAL functions.  

3.2 Sequence Flow of Proposed System 
An overview description of the steps involved during encryption operation in the proposed system after 

instantiating the Docker for fully homomorphic encryption scheme include: 

i-  first step to using the library for basic encryption tasks is to instantiate a new Encryption 

Parameters object and set its modulus attributes.  

ii- These parameters are stored in a SEAL Context object will check on the validity of the parameters.  

iii- Once validated, these parameters are used to create encryption keys and Encryptor and Decryptor 

objects. 

Once the validation of parameters for operations are set, Integer Encoder and Evaluator objects are included to 

encrypt input data and perform operations on the ciphertext. SEAL includes functionality to compute operations 

between ciphertext and plaintext, allowing for runtime improvements due to reduced encryption operational 

overhead. 

 

4.0 Results 
A generalized metric for any encryption algorithm is CPU and Memory utilization. In terms of technical metrics, 

the performance metrics for homomorphic encryption schemes and public-key encryption schemes are key size, 

and the time taken to perform encryption operations which is usually done by cryptanalysis.  

All the timing tests we performed were done using SEALPython built-in timing functions. We timed how long 

it took to: perform key generation, encrypt a plaintext (or plaintexts), and perform a single computation on the 

encrypted ciphertext (or ciphertexts), and then decrypt the result. We tested addition, subtraction, multiplication, 

squaring a ciphertext, cubing a ciphertext, negation, and equality, which is performed automatically by the 

SEALPython library.  

The timing functions keep track of the overall time spent in a particular function as well as the number of times 

that function was entered. From those two numbers, they output the averaged time spend in each function and a 

sample T-test analysis was carried out to compare the time taken to perform all operation. Results of operation 

are presented in Table 4.1- 4.4 below: 

4.1 Output Result Table A 

size of data 

(bit size) 

batch 

(seconds) 

unbatch  

(seconds) 

encrypt  

(seconds) 

decrypt  

(seconds) 

add  

(seconds) 

multiply  

(seconds) 

H_200bit 0.000821 0.071707 0.267089 0.220592 0.000168 0.281865 

T_200bit 0.049729 0.1770489 0.2274494 0.387216 0.049685 0.317117 

H_400bit 0.000935 0.13148 0.157782 0.106762 0.000183 0.216166 

T_400bit 0.048104 0.1836508 0.3763411 0.134128 0.049935 0.3773777 

H_600bit 0.001279 0.113834 0.220208 0.205097 0.000175 0.35195 

T_600bit 0.043434 0.1130827 0.2137758 0.178049 0.050247 0.3515731 

H_800bit 0.000812 0.06317 0.101607 0.09658 0.000183 0.246098 

T_800bit 0.062839 0.126332 0.3007167 0.241694 0.049973 0.3334784 

Table 4.  1: Output Result Table A 

Output Result Table A as presented above shows our results for four different bit size which include 

200,400,600, and 800 bit size of data generated batch, unbatch, encryption, decryption, add and multiply 

operations time(sec) for Homomorphic and Traditional process with prefix ‘H’ and ‘T’ to denote Homomorphic 

and Traditional operations respectively. 
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4.2 Output Result Table B 

size of 

data (bit 

size) 

multiply 

plain  

(seconds) 

square  

(seconds) 

relinearize  

(seconds) 

rotate 

rows one 

step  

(seconds) 

rotate 

rows 

random  

(seconds) 

rotate 

columns  

(seconds) 

H_200bit 0.339169 0.321794 0.168615 0.246875 0.355854 0.236465 

T_200bit 0.2677757 0.3366061 0.2531159 0.244939 0.5622537 0.3273023 

H_400bit 0.143382 0.14186 0.214965 0.216388 0.232031 0.153514 

T_400bit 0.1303494 0.4503302 0.1917181 0.430935 0.4088163 0.2970336 

H_600bit 0.205517 0.187237 0.210848 0.335486 0.343946 0.316247 

T_600bit 0.2670378 0.3810691 0.2315484 0.3766064 0.4830965 0.1790967 

H_800bit 0.144389 0.260109 0.246011 0.323896 0.230739 0.199149 

T_800bit 0.2831611 0.2493968 0.1918303 0.4205362 0.4270894 0.2573443 

Table 4.  2: Output Result Table B 

Output Result Table B as presented above shows our results for four different bit size which include 

200,400,600, and 800 bit size of data generated for plain text multiplication, square, relinearization, rows 

rotation one step, rows rotation randomly and columns rotation operations time(sec) for Homomorphic and 

Traditional process with prefix ‘H’ and ‘T’ to denote Homomorphic and Traditional operations respectively. 

 

4.3 Output Result Table C 

size of data 

(bit size) 

batch 

(seconds) 

unbatch  

(seconds) 

encrypt  

(seconds) 

decrypt  

(seconds) 

add  

(seconds) 

multiply  

(seconds) 

H_1000bit 0.000901 0.170807 0.192162 0.151109 0.000163 0.29056 

T_1000bit 0.049537 0.185841 0.1726246 0.338708 0.050177 0.2503214 

H_1200bit 0.035221 0.081619 0.19332 0.242377 0.000154 0.217603 

T_1200bit 0.061728 0.1922932 0.4819045 0.227831 0.050163 0.315538 

H_1400bit 0.000736 0.134179 0.189493 0.293423 0.000151 0.2882 

T_1400bit 0.04744 0.1941488 0.2376666 0.283295 0.050086 0.2721969 

H_1600bit 0.000822 0.155803 0.4039 0.07864 0.00021 0.40764 

T_1600bit 0.066834 0.1615712 0.2679297 0.308732 0.050424 0.3610805 

Table 4.  3: Output Result Table C 

Output Result Table C as presented above shows our results for four different bit size which include 

1000,1200,1400, and 1600 bit size of data generated for batch, unbatch, encryption, decryption, add and 

multiply operations  time(sec) for Homomorphic and Traditional process with prefix ‘H’ and ‘T’ to denote 

Homomorphic and Traditional operations respectively. 

 

 

 

 

IJSER



International Journal of Scientific & Engineering Research Volume 10, Issue 11, November-2019                                               359 
ISSN 2229-5518  

IJSER © 2019 

http://www.ijser.org 

 

 

4.4 Output Result Table D 

size of 

data (bit 

size) 

multiply 

plain  

(seconds) 

square  

(seconds) 

relinearize  

(seconds) 

rotate 

rows one 

step  

(seconds) 

rotate 

rows 

random  

(seconds) 

rotate 

columns  

(seconds) 

H_1000bit 0.212816 0.300811 0.234913 0.310528 0.363118 0.211072 

T_1000bit 0.251935 0.3723326 0.3485172 0.3668658 0.4893032 0.2427816 

H_1200bit 0.262981 0.371831 0.192135 0.288682 0.657771 0.166061 

T_1200bit 0.1588317 0.3300725 0.2304527 0.3961299 0.2544516 0.2010481 

H_1400bit 0.114312 0.313688 0.381029 0.206594 0.300819 0.103948 

T_1400bit 0.1042637 0.4281549 0.3427051 0.3177802 0.5923078 0.2772842 

H_1600bit 0.287278 0.254752 0.207039 0.137029 0.320866 0.198445 

T_1600bit 0.226739 0.2599971 0.1847683 0.3049691 0.4182713 0.2280953 

Table 4.  4: Output Result Table D 

Output Result Table B as presented above shows our results for four different bit size which include 

1000,1200,1400, and 1600 bit size of data generated for plain text multiplication, square, relinearization, rows 

rotation one step, rows rotation randomly and columns rotation operations time(sec) for Homomorphic and 

Traditional process with prefix ‘H’ and ‘T’ to denote Homomorphic and Traditional operations respectively. 

 

5.0 Results Analysis 
A clustered column bar graph will be used to graphically compare the results output for the presented result in 

the previous section. 

Chart below provides an analysis of Output Result Table A-D: 

5.1 Result Analysis of Table A 
 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  1:  Comparing Time of Operations For Table 4.1 
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From the analysis chart presented in figure 5.1, Homomorphic encryption is faster in all operations except for 

encryption operation at a data size of 200bit. 

 

 

5.2 Result Analysis of Table B 
 

 

Figure 5.  2: Result Analysis of Table B 

From the analysis chart presented in figure 5.2, Homomorphic encryption time is about the same for 

multiplication and Relinearize operations and faster in other operations at a data size of 400bit. 

 

5.3 Result Analysis of Table C 
 

 

Figure 5.  3: Result Analysis of Table C 
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From the analysis chart presented in figure 5.3, at a much bigger data size of about 1400bit Homomorphic 

encryption time shows almost similar operational time except for batch and addition operations. 

 

5.4 Result Analysis of Table D 
 

 

 

 

 

 

 

 

 

 

 

 

 

From the analysis chart presented in figure 5.4, at a much bigger data size of about 1400bit Traditional 

encryption operational time shows similar operational time for encryption. 

 

 

6.0 CONCLUSION 
In this research paper, we have provided an evaluation of the time taken for various Homomorphic encryption 

operations and proposed a method for demonstrating how Homomorphic encryption works. We discovered the 

existence of various techniques to achieving Homomorphic computations, we also found that each 

Homomorphic encryption technique has an underlying algorithm and every algorithm has its benefits according 

to different parameters and these parameters are as a result of effective encryption techniques (ideal lattice, 

lattice base technique, learning with error (LWE), ring learning with error (RLWE)). From the work completed 

in this research, it is observed from the result and corresponding Sample T-test analysis of our method that, 

Homomorphic encryption Operations are much more secure, faster and guarantee data security.  
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